Assignment no 01: Chapter 1

Note: You can check the exercises after the book Chapter.
In our assignment, we are using the first edition of "Signals and Systems: A MATLAB Integrated Approach" By Oktay Alkin.

Examples

Example 1.2: Two signals $x_{1}(\mathrm{t})$ and $x_{2}(t)$ are shown in Fig. 1.11. Sketch the signals
a. $g_{1}(t)=x_{1}(t)+x_{2}(t)$
b. $g_{2}(t)=x_{1}(t) x_{2}(t)$

(a)

(b)

Figure I.II - Signals $x_{1}(t)$ and $x_{2}(t)$ for Example 1.2.

Example 1.3: Consider the signal $x(t)$ shown in Fig. 1.16. Sketch the following signals:
a. $g(t)=x(2 t-5)$
b. $h(t)=x(-4 t+2)$

Figure I.I6 - The signal $x(t)$ for Example 1.3.

Example 1.6: Discuss the periodicity of the signals:
a. $x(t)=\sin (2 \pi 1.5 t)+\sin (2 \pi 2.5 t)$
b. $y(t)=\sin (2 \pi 1.5 t)+\sin (2 \pi 2.75 t)$

Example 1.16: Check the periodicity of the following discrete-time signals:
a. $x[n]=\cos (0.2 n)$
b. $x[n]=\cos (0.2 \pi n+\pi / 5)$
c. $x[n]=\cos (0.3 \pi n-\pi / 10)$

Faculty of Computers and Artificial Intelligence

CSx25: Digital Signal Processing

NCS224: Signals and Systems

Problems

1.1. Sketch and label each of the signals defined below:
a. $\quad x_{a}(t)=\left\{\begin{array}{cl}0, & t<0 \text { or } t>4 \\ 2, & 0<t<1 \\ 1, & 1<t<2 \\ t-1, & 2<t<3 \\ 2, & 3<t<4\end{array}\right.$
1.2. Consider the signals shown in Fig. P.1.2. For each signal write the analytical description in segmented form similar to the descriptions of the signals in Problem 1.1.

Figure P. I. 2
1.3. Using the two signals $x_{a}(t)$ and $x_{b}(t)$ given in Fig. P.1.2, compute and sketch the signals specified below:
c. $g_{3}(t)=2 x_{a}(t)-x_{b}(t)+3$

(a)

(b)

Figure P. I. 2
1.4. For the signal $x(t)$ shown in Fig. P.1.4, compute the following:
g. $g_{7}(t)=x\left(1-\frac{t}{3}\right)$

Figure P. I. 4
1.8. Sketch each of the following functions.
a. $\delta(t)+\delta(t-1)+\delta(t-2)$
1.9. Sketch each of the following functions in the time interval $-1 \leq t \leq 5$.

Afterwards use the waveform explorer program "wav demo1.m" to check your results.
a. $u(t)+u(t-1)-3 u(t-2)+u(t-3)$
e. $\Lambda(t)+2 \Lambda(t-1)+1.5 \Lambda(t-3)-\Lambda(t-4)$
1.17. Using the definition of periodicity, determine if each signal below is periodic or not.

If the signal is periodic, determine the fundamental period and the fundamental frequency.
b. $x(t)=2 \sin (\sqrt{20} t)$
g. $x(t)=e^{j(2 t+\pi / 10)}$
1.22. Determine the normalized energy of each of the signals shown in Fig. P.1.2.

(a)

Figure P. I. 2

Faculty of Computers and Artificial Intelligence

CSx25: Digital Signal Processing

NCS224: Signals and Systems

1.23. Determine the normalized average power of each of the periodic signals shown in Fig.P.1.23.

Figure P. I. 23
1.25. Identify which of the signals in Fig. P.1.25 are even, which ones are odd, and which signals are neither even nor odd.

Figure P. I. 25
1.33. For the signal $x[n]$ shown in Fig. P.1.33, sketch the following signals.
a. $g[n]=x[n-3]$
e. $g[n]=\left\{\begin{array}{cl}x[n / 2], & \text { if } n / 2 \text { is integer } \\ 0, & \text { otherwise }\end{array}\right.$

Figure P. I. 33

MATLAB Problems

1.47. Consider the discrete-time signal $x[n]$ used in Problem 1.33 and graphed in Fig.P.1.33.
a. Express this signal through an anonymous MATLAB function that utilizes the function ss_ramp (. .), and graph the result for index range $n=-10, \ldots, 10$.
b. Express each of the signals in parts (a) through (h) of Problem 1.33 in MATLAB, and graph the results. Use functions ss_step(. .) and ss_ramp(. .) as needed.
a. $g[n]=x[n-3]$
b. $g[n]=x[2 n-3]$
c. $g[n]=x[-n]$
d. $g[n]=x[2-n]$
e. $g[n]=\left\{\begin{array}{cl}x[n / 2], & \text { if } n / 2 \text { is integer } \\ 0, & \text { otherwise }\end{array}\right.$
f. $g[n]=x[n] \delta[n]$
g. $g[n]=x[n] \delta[n-3]$
h. $g[n]=x[n]\{u[n+2]-u[n-2]\}$

Figure P. I. 33

